Abstract

Tissue expansion has been applied in tissue repair and reconstruction of large soft tissue defects. Stromal vascular fraction (SVF) transplantation is a promising treatment in raising expansion efficiency. However, the clinical utilization of SVF is limited because of its conventional collagenase-based production. The aim of this study was to evaluate the effect of emulsified fat (EF), SVF obtained by using mechanical method, on accelerating tissue expansion. The microstructure of EF fragments and the proportion of mesenchymal stem cells (MSCs; CD45-/CD34+) in EF were detected. Wistar rats were divided into the following 3 groups randomly: the 1-mL EF group, the 0.5-mL EF group, and the control group. The tissue expansion was carried out twice a week to maintain the capsule pressure at 60 mm Hg. After 4 weeks, inflation volume and histological changes, which includes collagen content, cell proliferation, and capillary density, were observed to evaluate the effect of EF on tissue expansion. Mechanical emulsification effectively destroyed the mature adipocytes in adipose tissue. The proportion of MSCs population in the EF fragments was 12.40 ± 0.86%. After expansion, the inflation volume and the levels of collagen deposition, cell proliferation, and capillary density of the expanded tissue in the 1-mL EF group were significantly higher than that in the 0.5-mL EF group and the control group (P < 0.05). However, all these regenerative indicators in the 0.5-mL EF group showed no statistical difference from the control group (P > 0.05). The thickness of epidermal and dermal layers showed no significant difference among the 3 groups (P > 0.05). Our findings suggested that EF grafting can be used as a new alternative to increase tissue expansion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.