Abstract

To investigate the emulsifying properties and adsorption behaviour of high molecular amphiphilic substances such as proteins, it is important to maintain the native status of the used samples. The new method of micro porous glass (MPG) emulsification could offer an opportunity to do this because of the low shear forces. The oil-in-water emulsions were produced by dispersing the hydrophobic phase (liquid butter fat or sunflower oil) through the MPG of different average pore diameters ( d p=0.2 or 0.5 μm) into the flowing continuous phase containing the milk proteins (from reconstituted skim milk and buttermilk). The emulsions were characterised by particle size distribution, creaming behaviour and protein adsorption at the hydrophobic phase. The particle size distribution of protein-stabilised MPG emulsions is determined by the pore size of MPG, the velocity of continuous phase (or wall shear stress σ w) and the transmembrane pressure. A high velocity of v =2 m s −1 ( σ w=13.4 Pa) and low pressure (pressure of disperse phase slightly exceeded the critical pressure Δ p TM=4.5 bar of 0.2 μm-MPG) led to the smallest droplet diameter. As a consequence of average droplet diameters of d 43>3.5 μm creaming was observed without centrifugation in all MPG emulsions after 24 h, but no coalescence of the oil droplets occurred. The study of protein adsorption showed that the MPG emulsification at low shear forces resulted in lower protein load values (2.5±0.5 mg m −2) than pressure emulsification (11.5±1.0 mg m −2). In addition, the various emulsification conditions (MPG or pressure homogenization) led to differences in the relative proportions of casein fractions, whey proteins and milk fat globule membranes (MFGM) at the fat globule surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.