Abstract
When exponentially growing cultures of Acinetobacter calcoaceticus RAG-1 or RAG-92 were either treated with inhibitors of protein synthesis or starved for a required amino acid, there was a stimulation in the production of emulsan, an extracellular polyanionic emulsifier. Emulsan synthesis in the presence of chloramphenicol was dependent on utilizable sources of carbon and nitrogen and was inhibited by cyanide or azide or anaerobic conditions. Radioactive tracer experiments indicated that the enhanced production of emulsan after the addition of chloramphenicol was due to both the release of material synthesized before the addition of the antibiotic (40%) and de novo synthesis of the polymer (60%). Chemical analysis of RAG-1 cells demonstrated large amounts of polymeric amino sugars; it was estimated that cell-associated emulsan comprised about 15% of the dry weight of growing cells. The data are consistent with the hypothesis that a polymeric precursor of emulsan accumulates on the cell surface during the exponential growth phase; in the stationary phase or during inhibition of protein synthesis, the polymer is released as a potent emulsifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.