Abstract

This paper presents a dynamic optical phantom for the simulation of metabolic activities in the brain, and a linear equivalent model is built for control voltage versus substance concentration. A solid–solid dynamic optical phantom is realized by using liquid crystal film as a voltage-controlled light intensity regulator on the surface of basic phantom, which uses epoxy resin as matrix material and nanometer carbon powder and titanium dioxide powder as absorption and scattering dopants, respectively. The dynamic phantom could mimic near-infrared spectrum (NIRS) signals with sampling rate up to 10 Hz, and the maximum simulation errors for oxy-hemoglobin and deoxy-hemoglobin concentrations varying in the range of 1 μmol/l are 7.0% and 17.9%, respectively. Compared with similar solid biomimetic phantoms, the adjustable mimic substance concentration range is extended by an order of magnitude, which meets the simulation requirements of most brain NIRS signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.