Abstract

Abstract Predicting the spatial distribution of maximum inundation depth (depth-MAP) is important for the mitigation of hydrological disasters induced by extreme precipitation. However, physics-based rainfall-runoff-inundation (RRI) models, which are used operationally to predict hydrological disasters in Japan, require massive computational resources for numerical simulations. Here, we aimed at developing a computationally inexpensive deep learning model (Rain2Depth) that emulates an RRI model. Our study focused on the Omono River (Akita Prefecture, Japan) and predicted the depth-MAP from spatial and temporal rainfall data for individual events. Rain2Depth was developed based on a convolutional neural network (CNN), and predicts depth-MAP from 7-day successive hourly rainfall at 13 rain gauge stations in the basin. For training the Rain2Depth, we simulated the depth-MAP by the RRI model forced by 50-ensembles of 30-year data from large-ensemble weather/climate predictions. Instead of using the input and output data directly, we extracted important features from input and output data with two dimensionality reduction techniques (principal component analysis (PCA) and the CNN approach) prior to training the network. This dimensionality reduction aimed to avoid overfitting caused by insufficient training data. The nonlinear CNN approach was superior to the linear PCA for extracting features. Finally, Rain2Depth was architected by connecting the extracted features between input and output data through a neural network. Rain2Depth-based predictions were more accurate than predictions from our previous model (K20), which used ensemble learning of multiple regularized regressions for a specific station. Whereas the K20 can predict maximum inundation depth only at stations, our study achieved depth-MAP prediction by training only the single model Rain2Depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call