Abstract

ABSTRACT Forward-modeling observables from galaxy simulations enables direct comparisons between theory and observations. To generate synthetic spectral energy distributions (SEDs) that include dust absorption, re-emission, and scattering, Monte Carlo radiative transfer is often used in post-processing on a galaxy-by-galaxy basis. However, this is computationally expensive, especially if one wants to make predictions for suites of many cosmological simulations. To alleviate this computational burden, we have developed a radiative transfer emulator using an artificial neural network (ANN), ANNgelina, that can reliably predict SEDs of simulated galaxies using a small number of integrated properties of the simulated galaxies: star formation rate, stellar and dust masses, and mass-weighted metallicities of all star particles and of only star particles with age <10 Myr. Here, we present the methodology and quantify the accuracy of the predictions. We train the ANN on SEDs computed for galaxies from the IllustrisTNG project’s TNG50 cosmological magnetohydrodynamical simulation. ANNgelina is able to predict the SEDs of TNG50 galaxies in the ultraviolet (UV) to millimetre regime with a typical median absolute error of ∼7 per cent. The prediction error is the greatest in the UV, possibly due to the viewing-angle dependence being greatest in this wavelength regime. Our results demonstrate that our ANN-based emulator is a promising computationally inexpensive alternative for forward-modeling galaxy SEDs from cosmological simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call