Abstract

Scientific application workflows leverage the capabilities of cutting-edge high-performance computing (HPC) facilities to enable complex applications for academia, research, and industry communities. Data transfer and I/O dependency among different modules of modern HPC workflows can increase the complexity and hamper the overall performance of workflows. Understanding this complexity due to data-dependency and dataflow is an essential prerequisite for developing optimization strategies to improve I/O performance and, eventually, the entire workflow. In this paper, we discuss dataflow patterns for workflow applications on HPC systems. As existing I/O benchmarking tools lack in identifying and representing the dataflow in modern HPC workflows, we have implemented Wemul, an open-source workflow I/O emulation framework, to mimic different types of I/O behavior demonstrated by common and complex HPC application workflows for deeper analysis. We elaborate on the features and usage of Wemul, demonstrate its application to HPC workflows, and discuss the insights from the performance analysis results on Lassen supercomputing cluster at Lawrence Livermore National Laboratory (LLNL).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.