Abstract

Mimicking synaptic functions in hardware devices is a crucial step in realizing brain-like computing beyond the von Neumann architecture. 1D nanomaterials with spatial extensions of a few μm, similar to biological neurons, gain significance given the ease of electrical transport as well as directionality. Herein, we report a two-terminal optically active device based on 1D supramolecular nanofibres consisting of CS (coronene tetracarboxylate) and DMV (dimethyl viologen) forming alternating D-A (donor-acceptor) pairs, emulating synaptic functions such as the STP (short-term potentiation), LTP (long-term potentiation), PPF (paired-pulse facilitation), STDP (spike-time dependent plasticity) and learning-relearning behaviors. In addition, an extensive study on the less explored Ebbinghaus forgetting curve has been carried out. The supramolecular nanofibres being light sensitive, the potential of the device as a visual system is demonstrated using a 3 × 3 pixel array.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.