Abstract

Multipath streaming protocols have recently attracted much attention because they provide an effective means to provide high-quality streaming over the Internet. However, many existing schemes require a long start-up delay and thus are not suitable for interactive applications such as video conferencing and tele-presence. In this paper, we focus on real-time live streaming applications with stringent end-to-end latency requirement, say several hundreds of milliseconds. To address these challenges, we take a joint multipath and FEC approach that intelligently splits the FEC-encoded stream among multiple available paths. We develop an analytical model and use asymptotic analysis to derive closed-form, optimal load splitting solutions, which are surprisingly simple yet insightful. To our best knowledge, this is the first work that provides such closed-form optimal solutions. Based on the analytical insights, we have designed and implemented a novel Encoded Multipath Streaming (EMS) scheme for real-time live streaming. EMS strives to continuously satisfy the application's QoS requirements by dynamically adjusting the load splitting decisions and the FEC settings. Our simulation results have shown that EMS can not only outperform the existing multipath streaming schemes, but also adapt to the dynamic loss and delay characteristics of the network with minimal overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.