Abstract

Extreme mass ratio inspiral (EMRI) events are vulnerable to perturbations by the stellar background, which can abort them prematurely by deflecting EMRI orbits to plunging ones that fall directly into the massive black hole (MBH), or to less eccentric ones that no longer interact strongly with the MBH. A coincidental hierarchy between the collective resonant Newtonian torques due to the stellar background, and the relative magnitudes of the leading-order post-Newtonian precessional and radiative terms of the general relativistic 2-body problem, allows EMRIs to decouple from the background and produce semi-periodic gravitational wave signals. I review the recent theoretical developments [1] that confirm this conjectured fortunate coincidence [2], and briefly discuss the implications for EMRI rates, and show how these dynamical effects can be probed locally by stars near the Galactic MBH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call