Abstract

To probe magnetic ordering in single crystals of Pr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Sr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</i> = 0.22, 0.24, 0.26), the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</i> -band electron magnetic resonance (EMR) measurements were carried out in the temperature range 5 K les T les 600 K. It appears that two additional (as compared to well-known La <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Ca <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> system) factors influence on such ordering and on magnetic correlations in paramagnetic state. They are: low temperature ferromagnetic like order of Pr-subsystem and strong charge ordered state (CO). In particular, the competition of CO and ferromagnetic coupling results in suppression of EMR susceptibility at low temperatures, as well as in its notable deviation from the standard Curie-Weiss behavior in paramagnetic state. It is shown that the character of paramagnetic spin dynamics changes notably with Sr-doping, i.e., the higher doping-the stronger contribution of electron-impurity spin relaxation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.