Abstract

The energies of the lowest-lying anion states of phenyl (C6H5N=C=O) and benzyl (C6H5CH2N=C=O) isocyanates have been determined experimentally in the gas phase for the first time using electron transmission spectroscopy (ETS), and their localization properties have been evaluated using HF/6-31G, MP2/6-31G*, and B3LYP/6-31G* calculations. The lowest-lying anion state of phenyl isocyanate, mainly of benzene ring character but with some contribution also from the N=C=O pi-system, lies at significantly higher energy than that of other benzenes substituted by pi-functionals, such as benzaldehyde or styrene. The scaling with the use of suitable empirical equations of the virtual orbital energies (VOEs) for orbitals with predominantly pi*(ring) character calculated for the neutral-state molecules leads to vertical attachment energies (VAEs) which closely correspond to those determined experimentally, whereas those calculated for the predominantly pi*(CO) and pi*(NC) orbitals (3rd and 4th LUMO, respectively) are significantly different from the corresponding measured values notwithstanding the fact that the calculations reproduce the shortening of the N=C and C=O double bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.