Abstract

Practical wearable gesture tracking requires that sensors align with existing ergonomic device forms. We show that combining EMG and pressure data sensed only at the wrist can support accurate classification of hand gestures. A pilot study with unintended EMG electrode pressure variability led to exploration of the approach in greater depth. The EMPress technique senses both finger movements and rotations around the wrist and forearm, covering a wide range of gestures, with an overall 10-fold cross validation classification accuracy of 96%. We show that EMG is especially suited to sensing finger movements, that pressure is suited to sensing wrist and forearm rotations, and their combination is significantly more accurate for a range of gestures than either technique alone. The technique is well suited to existing wearable device forms such as smart watches that are already mounted on the wrist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.