Abstract

Strong high-ionization lines such as He ii of young galaxies are puzzling at high and low redshift. Although recent studies suggest the existence of nonthermal sources, whether their ionizing spectra can consistently explain multiple major emission lines remains a question. Here we derive the general shapes of the ionizing spectra for three local extremely metal-poor galaxies (EMPGs) that show strong He ii λ4686. We parameterize the ionizing spectra composed of a blackbody and power-law radiation mimicking various stellar and nonthermal sources. We use photoionization models for nebulae and determine seven parameters of the ionizing spectra and nebulae by Markov Chain Monte Carlo methods, carefully avoiding systematics of abundance ratios. We obtain the general shapes of ionizing spectra explaining ∼10 major emission lines within observational errors with smooth connections from observed X-ray and optical continua. We find that an ionizing spectrum of one EMPG has a blackbody-dominated shape, while the others have convex downward shapes at >13.6 eV, which indicate a diversity of the ionizing spectrum shapes. We confirm that the convex downward shapes are fundamentally different from ordinary stellar spectrum shapes, and that the spectrum shapes of these galaxies are generally explained by the combination of the stellar and ultraluminous X-ray sources. Comparisons with stellar synthesis models suggest that the diversity of the spectrum shapes arises from differences in the stellar age. If galaxies at z ≳ 6 are similar to the EMPGs, high-energy (>54.4 eV) photons of the nonstellar sources negligibly contribute to cosmic reionization due to relatively weak radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call