Abstract

As water rises in the pores of a partially immersed porous film due to capillary action, it carries along ions that are dissociated from the pore walls, generating a streaming current and potential. The water and current flows are sustained due to water evaporation from the unsubmerged surfaces. Traditionally, inert graphite (C) electrodes are used to construct water-evaporation-induced generators (WEIGs) that harness this electricity. WEIGs are environmentally friendly but have weak power outputs. Herein, we report on C/metal WEIGs that feature C top electrodes and metal bottom electrodes, as well as metal/metal WEIGs. Operating in a NaCl solution that facilitates the Galvanic corrosion of the metal (Cu, steel, and Al) electrodes, these Galvanic WEIGs outperform a C/C WEIG by thousands of times in power output. Equally interestingly, the asymmetric environments and potential differences between the two electrodes of a WEIG facilitate metal corrosion and fabrication of compact Galvanic WEIGs. This study clearly shows that one should choose electrodes with caution for the construction of true WEIGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.