Abstract
In densely populated Asian countries, e-bikes have become a new supernova in daily urban transportation. To facilitate the operations of e-bike-based mobility, the present paper studies the management of the battery deployment for the e-bike battery-swapping system, where the unique features of e-bike riding are considered. Given the pedal-assisted mode, e-bike users could abandon waiting and return to the station later on without too much range anxiety. However, because of the time-varying nature of the customer arrival and the complicated user behaviors, the battery quantity at each station is altered to guarantee the designated service level. However, little research has been done on the operations management of the e-bike battery-swapping system. To bridge the gap, we propose a nonstationary queueing network model to characterize the customer behaviors during the battery-swapping service. Then we develop a closed-form delayed infinite-server fluid approximation for the battery deployment of the one-time-loop scenario under various quality-of-service targets. In addition, we handle the infinite-time-loop scenario with the simulation-based iterative staffing algorithm. In the simulation study, we observe that the proposed battery deployment algorithms can help stabilize the system performance in terms of abandonment probability and expected delay in the face of time-varying demand and complex customer behaviors. Moreover, we reveal that the number of return loops correlates with the service level targets on the battery deployment decision. Furthermore, a time gap exists between the demand and the optimal battery deployment, making proactive battery management in the system possible. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72271222, 71871203, 71872093, 72271137, L1924063], and the National Social Science Fund of China [Grant 21&ZD128]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0132 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.