Abstract
Advancements in science and technology have led to the widespread use of computer systems in various applications, emphasizing the importance of software reliability. Software failures can have severe consequences, making thorough testing crucial. Software reliability growth models (SRGMs) play a significant role in enhancing reliability by predicting improvement over time. This article introduces a comprehensive approach to software reliability that incorporates a dynamic fault detection rate, along with fault removal efficiency. The fault detection rate measures the rate at which faults are identified during testing, reflecting the effectiveness of the testing process. By incorporating this dynamic component, the model provides a more accurate estimation of software reliability and enables adaptive testing strategies and resource allocation. Achieving a high fault detection rate is desirable, but organizations must consider the cost implications and strike a balance between reliability and time-to-market constraints. This article extends the analysis to calculate the optimal release time and optimal warranty period that minimize development costs, subject to the desired reliability. By considering these factors, development teams can make informed decisions regarding the timing of software release and the duration of the warranty period, optimizing both reliability and cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.