Abstract

Bradyrhizobium sp. strain SUTN9-2 was confirmed as rice endophytic bacteria and also as rice growth promotion agent. SUTN9-2 showed the capability of plant growth promotion characteristics, such as indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase productions and nitrogen fixation. In this study, the ability of SUTN9-2 to stimulate rice growth was investigated at different stages with N-free and NH4 NO3 under invivo condition. The rice dry weight and chlorophyll content could be enhanced when SUTN9-2 was inoculated in N-free, especially at seedling stage (7 and 14 dai). The rice dry weight was also increased when SUTN9-2 was inoculated with NH4 NO3 at 7 and14 dai. The results of quantitative analysis of IAA and ACC deaminase were inconsistent with the expression of genes involved in IAA (nit) and ACC deaminase (acdS) productions. This inconsistently could implied that IAA and ACC deaminase produced from SUTN9-2 do not directly affect rice growth, but other factors resulting from the production of IAA and ACC deaminase could be involved. Moreover, the expression of genes involved in nitrogen fixation (nifH and nifV) of SUTN9-2 was also induced in rice tissues. This finding suggested that rice growth promotion may be supported by NH4 NO3 together with nitrogen fixation by SUTN9-2. SIGNIFICANCE AND IMPACT OF THE STUDY: Indole-3-acetic acid, 1-amino-cyclopropane-1-carboxylic acid deaminase productions and nitrogen fixation may play important roles in rice growth promotion by endophytic SUTN9-2, especially at early rice seedling growth stage, which has the potential to be used as rice seedling growth promoter in the system of rice intensification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.