Abstract

Personalized news recommendation is an essential technique for online news services. News articles usually contain rich textual content, and accurate news modeling is important for personalized news recommendation. Existing news recommendation methods mainly model news texts based on traditional text modeling methods, which is not optimal for mining the deep semantic information in news texts. Pre-trained language models (PLMs) are powerful for natural language understanding, which has the potential for better news modeling. However, there is no public report that show PLMs have been applied to news recommendation. In this paper, we report our work on exploiting pre-trained language models to empower news recommendation. Offline experimental results on both monolingual and multilingual news recommendation datasets show that leveraging PLMs for news modeling can effectively improve the performance of news recommendation. Our PLM-empowered news recommendation models have been deployed to the Microsoft News platform, and achieved significant gains in terms of both click and pageview in both English-speaking and global markets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.