Abstract

In the framework of civil aviation noise levels are becoming restricted every year, on one hand to provide comfort to the passengers and on the other hand to be compliant with regulations protecting airports surroundings. New technologies are required to reduce noise to cope with this restrictions as well as to guarantee a comfortable flight for passengers. For technological industries it is compulsory to stay competitive and keep improving the technology related to air intake acoustic liners. With an unceasingly growing market, for industries it is key to stay in the vanguard of air inlet technologies, ensuring innovation and establishing a proactive environment for future product generations. One of the main objectives in this framework is the reduction of the development time of these new technologies in all the stages of the process. In this work we focus on the design stage of a new prototype and we propose a hybrid technique enabling faster design and the reduction of development time. When designing new technologies or prototypes there are usually two constraints. On one hand, more innovative prototypes may present unconventional shapes are not accurately represented by conventional physical models. On the other hand, the available data is scarce, thus limiting the use of most innovative techniques based on the state-of-art of Artificial Intelligence. In this paper we propose a solution laying in the hybrid twin paradigm, combining both, data in the low limit and physics to provide a hybrid model able to represent unconventional and innovative acoustic solutions.

Highlights

  • Innovation in industry is a key factor for competitiveness in the market

  • It is necessary to define the boundary conditions of an acoustic liner, solve the problem of sound propagation and verifying the boundary condition using experimental or reference data

  • This work proved the benefits of the Hybrid Twin approach for modeling new acoustical prototypes

Read more

Summary

Introduction

Innovation in industry is a key factor for competitiveness in the market. In order to empower competitiveness industries need to implement new technologies, optimize the existing ones while addressing changing requirements. The implementation of a new technology goes through the following stages: conceptual design, first tests with numerical simulations, prototype design, experiments on the prototypes and final design. The aim of this paper is to present a hybrid technique enabling the engineer to make decisions with a reduced number of built prototypes, reducing the development time of new technologies. For that purpose the development of a new acoustic technology in aviation is going to be used as an example to display the benefits of using a dual data-physics engineering approach.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call