Abstract

This work addresses the employment of Machine Learning (ML) and Domain Adaptation (DA) in the framework of Brain-Computer Interfaces (BCIs) based on Steady-State Visually Evoked Potentials (SSVEPs). Currently, all the state-of-the-art classification strategies do not consider the high non-stationarity typical of brain signals. This can lead to poor performance, expecially when short-time signals have to be considered to allow real-time human-environment interaction. In this regard, ML and DA techniques can represent a suitable strategy to enhance the performance of SSVEPs classification pipelines. In particular, the employment of a two-step DA technique is proposed: first, the standardization of the data per subject is performed by exploiting a part of unlabeled test data during the training stage; second, a similarity measure between subjects is considered in the selection of the validation sets. The proposal was applied to three classifiers to verify the statistical significance of the improvements over the standard approaches. These classifiers were validated and comparatively tested on a well-known public benchmark dataset. An appropriate validation method was used in order to simulate real-world usage. The experimental results show that the proposed approach significantly improves the classification accuracy of SSVEPs. In fact, up to 62.27 % accuracy was achieved also in the case of short-time signals (i.e., 1.0 s). This represents a further confirmation of the suitability of advanced ML to improve the performance of BCIs for daily-life applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.