Abstract

In turbomachinery, the steady adjoint method has been successfully used for the computation of derivatives of various objective functions with respect to design variables in gradient-based optimization. However, the continuous advances in computing power and the accuracy limitations of the steady-state assumption lead toward the transition to unsteady computational fluid dynamics (CFD) computations in the industrial design process. Previous work on unsteady adjoint for turbomachinery applications almost exclusively rely upon frequency-domain methods, for both the flow and adjoint equations. In contrast, in this paper, the development the discrete adjoint to the unsteady Reynolds-averaged Navier–Stokes (URANS) solver for three-dimensional (3D) multirow applications, in the time-domain, is presented. The adjoint equations are derived along with the adjoint to the five-stage Runge–Kutta scheme. Communication between adjacent rows is achieved by the adjoint sliding interface method. An optimization workflow that uses unsteady flow and adjoint solvers is presented and tested in two cases, with objective functions accounting for the transient flow in a turbine vane and the periodic flow in a compressor three-row setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call