Abstract
KANSEI Engineering (KE) is a method for translating feelings and impressions into product parameters and the objective of KANSEI Engineering is to study the relationship between product forms and KANSEI images. It is most important to extract critical form features of the product relative to specific KANSEI adjectives through a WEB-based KANSEI information system. In this paper, critical form features and KANSEI adjectives were defined as condition attributes and decision attributes respectively, which were formalized as two objects in Decision Table (DT). Then, the Semantic Differential (SD), which measures the connotative meaning of concepts, was applied to evaluate form features of the product through a KANSEI questionnaire system. The evaluation record from an individual’s transaction data was reserved if its frequency was higher than the given threshold. Some form features were deleted by using an attribute reduction algorithm based on Rough Sets Theory (RST). Furthermore, the size of the DT was reduced by using a rule-joining operation. A strong association rule set which describes the relationship between the critical form features and the corresponding KANSEI adjectives was subsequently generated. A case study of a mobile phone design was presented to demonstrate the effectiveness of the proposed method by comparing it with other non-linear data mining methods in KANSEI Engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.