Abstract

Uniform periodic structure formation over a large sample area has been challenging in laser interference lithography (LIL) mainly due to the Gaussian intensity distribution inherent to a laser beam. In this work, refractive beam shaping devices are applied in a Lloyd's interferometer to create a flat-top light field (2.8% intensity variation over an area of 20 × 20 cm2) for wafer-scale nanopatterning. Around 10−2 variation in fill factors are obtained for all the reported one dimensional and two dimensional periodic structures across a 2-in. wafer, which is 1 order of magnitude lower than the values obtained for the samples exposed to a Gaussian light field. The proposed LIL system also allows gradual light field transitions from the Gaussian, super-Gaussian, and flat-top to the inverse-Gaussian by simply adjusting the spot size of the laser incident to the beam shaper. The authors believe that the proposed LIL system can be applied for a variety of applications that benefit from the nature of periodic nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call