Abstract

Construction of structural defects in photocatalysts is a powerful tool for regulating their photocatalytic performance. In this work, we develop a facile one-step coupling cold plasma and thermal polymerization approach to synthesize a series of nitrogen defect-rich graphitic carbon nitrides (C3N4-x), which are used for visible-light-driven hydrogen generation from water. The nitrogen defect-induced band structure regulation of C3N4-x catalysts can be carried out through controlling the bombardment time and excitation power of generator during the plasma modification process. The defective C3N4-x catalysts have the extended visible light absorption and improved separation efficiency of photogenerated charge carriers, which results in the boosted hydrogen generation activity. Particularly, the optimal C3N4-x possesses a hydrogen generation rate of 2.46 mmol h−1 g−1, which is about 4.5 times higher than the pristine C3N4 synthesized by the single thermal polymerization of urea. The cold plasma modification-based one-step synthesis approach guides us for rationally designing defective nanomaterials with excellent catalytic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.