Abstract
This paper considers motion planning for a six-legged walking robot in rough terrain, considering both the geometry of the terrain and its semantic labeling. The semantic labels allow the robot to distinguish between different types of surfaces it can walk on, and identify areas that cannot be negotiated due to their physical nature. The proposed environment map provides to the planner information about the shape of the terrain, and the terrain class labels. Such labels as “wall” and “plant” denote areas that have to be avoided, whereas other labels, “grass”, “sand”, “concrete”, etc. represent negotiable areas of different properties. We test popular classification algorithms: Support Vector Machine and Random Trees in the task of producing proper terrain labeling from RGB-D data acquired by the robot. The motion planner uses the A∗ algorithm to guide the RRT-Connect method, which yields detailed motion plans for the multi-d.o.f. legged robot. As the A∗ planner takes into account the terrain semantic labels, the robot avoids areas which are potentially risky and chooses paths crossing mostly the preferred terrain types. We report experimental results that show the ability of the new approach to avoid areas that are considered risky for legged locomotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.