Abstract

Optimizing antimicrobial dosage regimens and development of breakpoints for antimicrobial susceptibility testing are important prerequisites for rational antimicrobial use. The objectives of the study were (1) to produce MIC data for four mink pathogens and (2) to employ these MIC data to support the development of tentative epidemiological cut-off values (TECOFFs), which may be used for future development of mink-specific antimicrobial dosages and breakpoints. Broth microdilution was used to establish MIC distributions for 322 mink bacterial isolates of clinical origin from six European mink-producing countries. The included species were E. coli (n = 162), S. delphini (n = 63), S. canis (n = 42), and P. aeruginosa (n = 55). Sixty-four E. coli isolates and 34 S. delphini isolates were whole-genome sequenced and analyzed for antimicrobial resistance genes. No EUCAST MIC data are available on S. delphini and S. canis, hence tentative ECOFFs were suggested for the majority of the tested antimicrobials. For E. coli and P. aeruginosa, the wildtype distributions were in accordance with EUCAST data. Overall, the genotypes of the sequenced isolates were in concordance with the phenotypes. These data constitute an important piece in the puzzle of developing antimicrobial dosages and clinical breakpoints for mink. Until pharmacokinetic and clinical data become available, the (tentative) ECOFFs can be used for monitoring resistance development and as surrogates for clinical breakpoints.

Highlights

  • As in other species, mink become clinically ill due to various infectious agents, including a range of bacterial pathogens causing decreased animal welfare and affecting commercial fur production

  • Data and derived tentative ECOFF (TECOFF) were in accordance with the European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off value (ECOFF) (Table 2)

  • There were no indications other than that the range and mode of colistin, spectinomycin and sulfamethoxazole in combination with trimethoprim (SXT) were in accordance with the EUCAST ECOFFs (Figures 2, 4, 6)

Read more

Summary

Introduction

Mink become clinically ill due to various infectious agents, including a range of bacterial pathogens causing decreased animal welfare and affecting commercial fur production. Antimicrobial therapy in the mink industry is mostly based on empirical knowledge since clinical breakpoints and antimicrobial dosage regimens for mink are unavailable. Such non-evidence-based practice might lead to treatment failure, toxicity, and/or selection for antimicrobial resistance. Optimal treatment of bacterial infections relies on pharmacodynamic data pertaining to bacterial target pathogens and antimicrobial agents, respectively. Exploiting such data for development of clinical breakpoints and dosage regimens can help ensure a proper drug choice and an adequate antimicrobial concentration at the site of infection

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.