Abstract

Blindness usually comes from two main causes, glaucoma and diabetes. Robust mass screening is performed for diagnosing, such as screening that requires a cost-effective method for glaucoma and diabetic retinopathy and integrates well with digital medical imaging, image processing, and administrative processes. For addressing all these issues, we propose a novel low-cost automated glaucoma and diabetic retinopathy diagnosis system, based on features extraction from digital eye fundus images. This paper proposes a diagnosis system for automated identification of healthy, glaucoma, and diabetic retinopathy. Using a combination of local binary pattern features, Gabor filter features, statistical features, and color features which are then fed to an artificial neural network and support vector machine classifiers. In this work, the classifier identifies healthy, glaucoma, and diabetic retinopathy images with an accuracy of 91.1%,92.9%, 92.9%, and 92.3% and sensitivity of 91.06%, 92.6%, 92.66%, and 91.73% and specificity of 89.83%, 91.26%, 91.96%, and 89.16% for ANN, and an accuracy of 90.0%,92.94%, 95.43%, and 97.92% and sensitivity of 89.34%, 93.26%, 95.72%, and 97.93% and specificity of 95.13%, 96.68%, 97.88%, and 99.05% for SVM, based on 5, 10, 15, and 31 number of selected features. The proposed system can detect glaucoma, diabetic retinopathy and normal cases with high accuracy and sensitivity using selected features, the performance of the system is high due to using of a huge fundus database.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call