Abstract
The Azo dyes are primarily employed in textile industries to produce high amounts of colored organic and inorganic wastewater. Therefore, their treatments are critical. In this research, the removal and mineralization of Acid red 88 (AR88), as a widely used mono Azo dye, was inspected by the Electro-peroxone(E-peroxone) method. It is a coupling of electrochemically produced H2O2 and ozone that can produce robust hydroxyl radicals. The Central Composite Design (CCD) was applied to explore the influence of operational variables on the removal of AR88 as a response. The optimal conditions predicted by the CCD were as the following; Applied current at 0.7 A, pH at 7.35, O3 Flowrate at 1.03 L min−1 and the concentration of AR88 at 527.29 mg. L−1. The Pareto chart showed that the concentration of AR88 has a significant influence on the response. At the predicted optimal conditions, the actual and predicted AR 88 removal were 95.4 and 92.96%, respectively. The removal of COD after 45 min was 70% representing the excessive efficiency of E-peroxone in mineralization of AR88. The E-peroxone follows the pseudo-first-order kinetics (kobs-E-peroxone = 6.56 × 10−2 min−1), which was more remarkable than the single ozonation, and electrolysis. The calculated specific energy consumption (SEC) in the E-peroxone was 40.14 kWh/Kg AR 18 removal, which was lower than the individual ozonation, and electrolysis methods. The operative production of H2O2 from O2 at the cathode is the critical factor in the high removal of AR88 in this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.