Abstract

Multi-modal feature fusion and saliency reasoning are two core sub-tasks of RGB-D salient object detection. However, most existing models employ linear fusion strategies (e.g., concatenation) for multi-modal feature fusion and use a simple coarse-to-fine structure for saliency reasoning. Despite their simpleness, they can neither fully capture the cross-modal complementary information nor exploit the multi-level complementary information among the cross-modal features at different levels. To address these issues, a novel RGB-D salient object detection model is presented, where we pay special attention to the aforementioned two sub-tasks. Concretely, a multi-modal feature interaction module is first presented to explore more interactions between the unimodal RGB and depth features. It helps to capture their cross-modal complementary information by jointly using some simple linear fusion strategies and bilinear fusion ones. Then, a saliency prior information guided fusion module is presented to exploit the multi-level complementary information among the fused cross-modal features at different levels. Instead of employing a simple convolutional layer for the final saliency prediction, a saliency refinement and prediction module is designed to better exploit those extracted multi-level cross-modal information for RGB-D saliency detection. Experimental results on several benchmark datasets verify the effectiveness and superiority of the proposed framework over some state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.