Abstract

Actinide based metal-organic frameworks (MOFs) are unique not only because compared to the transition-metal and lanthanide systems they are substantially less explored, but also owing to the uniqueness of actinide ions in bonding and coordination. Now a 3D thorium-organic framework (SCU-11) contains a series of cages with an effective size of ca. 21×24 Å. Th4+ in SCU-11 is 10-coordinate with a bicapped square prism coordination geometry, which has never been documented for any metal cation complexes. The bicapped position is occupied by two coordinated water molecules that can be removed to afford a very unique open Th4+ site, confirmed by X-ray diffraction, color change, thermogravimetry, and spectroscopy. The degassed phase (SCU-11-A) exhibits a Brunauer-Emmett-Teller surface area of 1272 m2 g-1 , one of the highest values among reported actinide materials, enabling it to sufficiently retain water vapor, Kr, and Xe with uptake capacities of 234 cm3 g-1 , 0.77 mmol g-1 , 3.17 mmol g-1 , respectively, and a Xe/Kr selectivity of 5.7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.