Abstract

Glutathione (GSH) mediates a wide variety of biological events and human diseases. Although it has been the subject of intense study in recent years, a further understanding of its molecular mechanisms and metabolism routes in living cells has remained limited due to a lack of appropriate analytical tools. Sulfur dioxide (SO2), an important metabolite of GSH, is usually associated with the symptoms of neurological disorders, cardiovascular diseases, and lung cancer. Herein, a novel multisignal fluorescent probe was rationally designed and exploited for the simultaneous detection of GSH and its metabolite SO2 via an ICT-FRET synergetic mechanism. The probe shows completely reversed fluorescence responses toward GSH (enhanced red emission) and SO2 (annihilated red fluorescence) with high selectivity and sensitivity. In particular, the probe displayed completely different fluorescent signals (blue-shift) with SO2 in the presence of GSH, thereby allowing the imaging of the metabolism process of GSH to SO2 in two independent channels without spectral cross interference. Given these advantages, this probe has been successfully applied to the real-time monitoring of the SO2 metabolic process in living cells and mice models, and it has thus been found that GSH can metabolize SO2 by enzymatic reaction with TST (thiosulfate sulphurtransferase); additionally, SO2 was transformed into sulfate under SUOX (sulfite oxidase). We anticipate that this research will provide a convenient and efficient tool for understanding the interrelated physiological functions of GSH and SO2 in more biosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.