Abstract

We introduce a propagation-based parametric symbolic model approach to supporting analytic provenance. This approach combines a script language to capture and encode the analytic process and a parametrically controlled symbolic model to represent and reuse the logic of the analysis process. Our approach first appeared in a visual analytics system called CZSaw. Using a script to capture the analyst’s interactions at a meaningful system action level allows the creation of a parametrically controlled symbolic model in the form of a Directed Acyclic Graph (DAG). Using the DAG allows propagating changes. Graph nodes correspond to variables in CZSaw scripts, which are results (data and data visualizations) generated from user interactions. The user interacts with variables representing entities or relations to create the next step’s results. Graph edges represent dependency relationships among nodes. Any change to a variable triggers the propagation mechanism to update downstream dependent variables and in turn updates data views to reflect the change. The analyst can reuse parts of the analysis process by assigning new values to a node in the graph. We evaluated this symbolic model approach by solving three IEEE VAST Challenge contest problems (from IEEE VAST 2008, 2009, and 2010). In each of these challenges, the analyst first created a symbolic model to explore, understand, analyze, and solve a particular subproblem and then reused the model via its dependency graph propagation mechanism to solve similar subproblems. With the script and model, CZSaw supports the analytic provenance by capturing, encoding, and reusing the analysis process. The analyst can recall the chronological states of the analysis process with the CZSaw script and may interpret the underlying rationale of the analysis with the symbolic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.