Abstract
This paper investigates the informational value of online reviews posted by employees for their employer, a rather untapped source of online information from employees, using a sample of 349,550 reviews from 40,915 UK firms. We explore this novel form of electronic Word-of-Mouth (e-WOM) from different perspectives, namely: (i) its information content as a tool to identify the drivers of job satisfaction/dissatisfaction, (ii) its predictive ability on firm financial performance and (iii) its operational and managerial value. Our approach considers both the rating score as well as the review text through a probabilistic topic modeling method, providing also a roadmap to quantify and exploit employee big data analytics. The novelty of this study lies in the coupling of structured and unstructured data for deriving managerial insights through a battery of econometric, financial and operational research methodologies. Our empirical analyses reveal that employee online reviews have informational value and incremental predictability gains for a firm’s internal and external stakeholders. The results indicate that when models integrate structured and unstructured big data there are leveraged opportunities for firms and managers to enhance the informativeness of decision support systems and in turn, gain competitive advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.