Abstract

Abstract. Lens-shaped slivers of Permian (Zechstein) amid Triassic units appearing along the master fault of the Sontra Graben in central Germany on the southern margin of the Central European Basin System (CEBS) were studied by means of detailed map analysis, a semi-quantitative forward model, and two balanced cross sections. We show how partial reactivation of the graben's main normal fault and shortcut thrusting in the footwall during inversion, combined with a specific fault geometry involving flats in low-shear-strength horizons, can produce the observed slivers of “exotic” Zechstein. This conceptual model implies that the Sontra Graben was created by about 1200 m of extension followed by some 1000 m of contraction, resulting in the few hundred meters of net extension observed today. Gentle dips and comparatively extensive exposure of some slivers suggest they are backthrust onto the reactivated normal fault's hanging wall, an interpretation corroborated in one location by shallow drilling. Backthrusting appears to have wedged some Zechstein slivers into incompetent Triassic units of the hanging wall. Based on regional correlation, extension most likely occurred in Late Triassic to Early Cretaceous time, while the contraction is almost certainly of Late Cretaceous age. The main aim of this paper is to describe an uncommon structural feature that we interpret to originate from inversion tectonics in an evaporite-bearing succession with multiple detachment horizons but without the presence of thick salt.

Highlights

  • The Mesozoic tectonic evolution of central Europe involved intermittent Triassic to Early Cretaceous extension followed by a short-lived pulse of mostly Late Cretaceous contractional deformation

  • We explore the hypothesis that the “exotic” Zechstein slivers were emplaced as a result of inversion tectonics involving bedding-parallel detachments in two evaporitic Zechstein horizons during both extension and contraction

  • Topography data for the cross sections and the geological map were obtained from the topographic map of Hessen (1 : 25 000) and from a digital elevation model (DEM) kindly provided by the Hessian Agency for Nature Conservation, Environment and Geology (HLNUG)

Read more

Summary

Introduction

The Mesozoic tectonic evolution of central Europe involved intermittent Triassic to Early Cretaceous extension followed by a short-lived pulse of mostly Late Cretaceous contractional deformation. The Hessian grabens appear as narrow strips of Middle to Late Triassic (Muschelkalk and Keuper; see Menning, 2018, for exact age assignments) strata, downfaulted by as much as several hundreds of meters relative to their Early Triassic (Buntsandstein) surroundings. Despite their designation as “grabens”, which was coined in the early 20th century (e.g., Schröder, 1925) and persists in their names today, many

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call