Abstract

The igneous complex of Neukirchen–Kdyně is located in the southwestern part of the Teplá–Barrandian unit (TBU) in the Bohemian Massif. The TBU forms the most extensive surface exposure of Cadomian basement in central Europe. Cambrian plutons show significant changes in composition, emplacement depth, isotopic cooling ages, and tectonometamorphic overprint from NE to SW. In the NE, the Všepadly granodiorite and the Smržovice diorite intruded at shallow crustal levels (<ca. 7 km depth) as was indicated by geobarometric data. K–Ar age data yield 547±7 and 549±7 for hornblende and 495±6 Ma for biotite of the Smržovice diorite, suggesting that this pluton has remained at shallow crustal levels ( T<ca. 350 °C) since its Cambrian emplacement. A similar history is indicated for the Všepadly granodiorite and the Stod granite. In the SW, intermediate to mafic plutons of the Neukirchen–Kdyně massif (Všeruby and Neukirchen gabbro, Hoher–Bogen metagabbro), which yield Cambrian ages, either intruded or were metamorphosed at considerably deeper structural levels (>20 km). The Teufelsberg (Čertův kámen) diorite, on the other hand, forms an unusual intrusion dated at 359±2 Ma (concordant U–Pb zircon age). K–Ar dating of biotite of the Teufelsberg diorite yields 342±4 Ma. These ages, together with published cooling ages of hornblende and mica in adjacent plutons, are compatible with widespread medium to high-grade metamorphism and strong deformation fabrics, suggesting a strong Variscan impact under elevated temperatures at deeper structural levels. The plutons of the Neukirchen area are cut by the steeply NE dipping Hoher–Bogen shear zone (HBSZ), which forms the boundary with the adjacent Moldanubian unit. The HBSZ is characterized by top-to-the-NE normal movements, which were particularly active during the Lower Carboniferous. A geodynamic model is presented that explains the lateral gradients in Cambrian pluton composition and emplacement depth by differential uplift and exhumation, the latter being probably related to long-lasting movements along the HBSZ as a consequence of Lower Carboniferous orogenic collapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call