Abstract

The Madeira granite is one of the Paleoproterozoic (1.82Ga) A-type granite intrusions in the Amazonian Craton. It is elongated in the NE–SW direction and is composed of four facies. Classical structural techniques and the anisotropy of magnetic susceptibility (AMS) method were applied to the study of its internal fabric. Magnetic susceptibility measurements, thermomagnetic curves, remanent coercivity spectra, optical microscopy and SEM (scanning electron microscopy) analyses were carried out on the earlier and later facies of the Madeira granite: the rapakivi granite (RG) and the albite granite (AG) respectively. The last one is subdivided into the border albite granite (BAG) and the core albite granite (CAG) subfacies. AMS fabric pattern is controlled by pure magnetite in all facies, despite significant amounts of hematite in the BAG subfacies. Microstructural observations show that in almost all sites, magnetic fabric correlates to magmatic state fabrics that are defined by a weak NE–SW orientation of mafic and felsic silicates. However, strain mechanisms in both subfacies of AG also exhibit evidence for solid-state deformation at high to moderate temperatures. Pegmatite dyke, strike slip fault (SFA–B–C), hydrothermal vein, normal fault (F1–2) and joint (J) structures were observed and their orientation and kinematics is consistent with the magmatic and solid-state structures. Dykes, SFA–C and F1, are usually orientated along the N70°E/40°N plane, which is nearly parallel to the strike of AMS and magmatic foliations. In contrast, veins, SFB, F2 and some J are oriented perpendicular to the N70°E trend. Kinematic analysis in these structures shows evidence for a dextral sense of movement in the system in the brittle regime. The coherent structural pattern for the three facies of Madeira granite suggests that the different facies form a nested pluton. The coherence in orientation and kinematics from magmatic to high-temperature solid-state, and into the brittle regime indicates the continuity in the stress regime from the last magmatic stages until the complete cooling of the pluton, likely along a NE–SW dextral corridor related to the regional deformation in the Uatumã–Anauá Domain of the Amazonian Craton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call