Abstract
For many forms of e-learning environments, the system's behavior can be viewed as a sequential decision process wherein, at each discrete step, the system is responsible for selecting the next action to take. Pedagogical strategies are policies to decide the next system action when there are multiple ones available. In this project we present a Reinforcement Learning (RL) approach for inducing effective pedagogical strategies and empirical evaluations of the induced strategies. This paper addresses the technical challenges in applying RL to Cordillera, a Natural Language Tutoring System teaching students introductory college physics. The algorithm chosen for this project is a model-based RL approach, Policy Iteration, and the training corpus for the RL approach is an exploratory corpus, which was collected by letting the system make random decisions when interacting with real students. Overall, our results show that by using a rather small training corpus, the RL-induced strategies indeed measurably improved the effectiveness of Cordillera in that the RL-induced policies improved students' learning gains significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.