Abstract
We compute quasilinear diffusion rates due to pitch angle scattering by various mechanisms in the Earth's electron radiation belts. The calculated theoretical lifetimes are compared with observed decay rates, and we find excellent qualitative agreement between the two. The overall structure of the observed lifetime profiles as a function of energy and L is largely due to plasmaspheric hiss and Coulomb scattering. The results also reveal a local minimum in lifetimes in the inner zone at lower energy ( ∼50 keV), attributed to enhanced scattering via ground‐based very low frequency transmitters, and a reduction in lifetimes at higher L and energy ( >1 MeV), attributed to enhanced electromagnetic ion cyclotron wave scattering. In addition, we find significant quantitative disagreement at L<3.5, where the theoretical lifetimes are typically a factor of ∼10 larger than the observed, pointing to an additional loss process that is missing from current models. We discuss potential factors that could contribute to this disagreement.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.