Abstract

A new method for constructing empirical valence bond potential energy surfaces for reactions is presented. Building on the generalized Gaussian approach of Chang-Miller, V12(2)(q) is represented by a Gaussian times a polynomial at the transition state and generalized to handle any number of data points on the potential energy surface. The method is applied to two model surfaces and the HCN isomerization reaction. The applications demonstrate that the present method overcomes the divergence problems encountered in some other approaches. The use of Cartesian versus internal or redundant internal coordinates is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.