Abstract

The Empirical Tight Binding (ETB) method is widely used in atomistic device simulations. The reliability of such simulations depends very strongly on the choice of basis sets and the ETB parameters. The traditional way of obtaining the ETB parameters is by fitting to experiment data, or critical theoretical bandedges and symmetries rather than a foundational mapping. A further shortcoming of traditional ETB is the lack of an explicit basis. In this work, a DFT mapping process which constructs TB parameters and explicit basis from DFT calculations is developed. The method is applied to two materials: GaAs and MgO. Compared with the existing TB parameters, the GaAs parameters by DFT mapping show better agreement with the DFT results in bulk band structure calculations and lead to different indirect valleys when applied to nanowire calculations. The MgO TB parameters and TB basis functions are also obtained through the DFT mapping process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.