Abstract

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.