Abstract

Wireless sensor–actuator networks (WSANs) offer an appealing communication technology for process automation applications to incorporate the Internet of Things (IoT). In contrast to other IoT applications, process automation poses unique challenges for industrial WSAN due to its critical demands on reliable and real-time communication. While industrial WSANs have received increasing attention in the research community recently, most published results to date have focused on the theoretical aspects and were evaluated based on simulations. There is a critical need for experimental research on this important class of WSANs. We developed an experimental testbed by implementing several key network protocols of WirelessHART, an open standard for WSANs that has been widely adopted in the process industries based on the HART. We then performed a series of empirical studies showing that graph routing leads to significant improvement over source routing in terms of worst-case reliability, but at the cost of longer latency and higher energy consumption. It is therefore important to employ graph routing algorithms specifically designed to optimize latency and energy efficiency. Our studies also suggest that channel hopping can mitigate the burstiness of transmission failures; a larger channel distance can reduce consecutive transmission failures over links sharing a common receiver. Based on these insights, we developed a novel channel hopping algorithm that utilizes far away channels for transmissions. Furthermore, it prevents links sharing the same destination from using channels with strong correlations. Our experimental results demonstrate that our algorithm can significantly improve network reliability and energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.