Abstract
A time-varying empirical spectral process indexed by classes of functions is defined for locally stationary time series. We derive weak convergence in a function space, and prove a maximal exponential inequality and a Glivenko–Cantelli-type convergence result. The results use conditions based on the metric entropy of the index class. In contrast to related earlier work, no Gaussian assumption is made. As applications, quasi-likelihood estimation, goodness-of-fit testing and inference under model misspecification are discussed. In an extended application, uniform rates of convergence are derived for local Whittle estimates of the parameter curves of locally stationary time series models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.