Abstract

We analyzed the physical characteristics of 40 halo coronal mass ejections (CMEs) and their geo-effective parameters observed during the period 2011 to 2013 in the rising phase of Solar Cycle 24. Out of all halo CMEs observed by SOHO/LASCO, we se- lected 40 halo CMEs and investigated their geomagnetic effects. In particular, we estimated the CME direction parameter (DP) from coronagraph observations, and we obtained the ge- omagnetic storm disturbance index (Dst) value corresponding to each event by following certain criteria. We studied the correlation between near-Sun parameters of CMEs such as speed and DP with Dst. For this new set of events in the current solar cycle, the relations are found to be consistent with those of previous studies. When the direction parameter increases, the Dst value also increases for symmetrical halo CME ejections. If DP > 0.6, these events produce high Dst values. In addition, the intensity of geomagnetic storm calcu- lated using an empirical model with the near-Sun parameters is nearly equal to the observed values. More importantly, we find that the geo-effectiveness in the rising phase of Solar Cycle 24 is much weaker than that in Cycle 23.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.