Abstract

An empirical relation between interstellar X-ray absorption and optical extinction is derived from the correlation of measurements made on objects of large intrinsic diameter. The result is Av = 4.5 times 10 to the -22nd power N(H) mag, with the principal error being largely systematic in origin, where N(H) represents the column density of interstellar matter in the Brown and Gould model for the X-ray absorption coefficient. Applying this ratio to optically identified compact sources, it is concluded that sources in binary systems showing pronounced X-ray occultations have an intrinsic absorption equivalent to about 10 to the 22-nd power atoms per sq cm of interstellar matter and that there are a few compact sources where the absorption seems to be primarily interstellar in origin. The interstellar absorption expected in Cyg X-1 from the extinction of its optical counterpart is much greater than that suggested by X-ray spectra, which may be due to a soft X-ray component greater than that predicted by the power law fitted to higher energy data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.