Abstract

Many underwater bioacoustical recording experiments (e.g., fish sound production during courtship or agonistic encounters) are usually conducted in a controlled laboratory environment of small-sized tanks. The effects of reverberation, resonance, and tank size on the characteristics of sound recorded inside small tanks have never been fully addressed, although these factors are known to influence the recordings. In this work, 5-cycle tone bursts of 1-kHz sound were used as a test signal to investigate the sound recorded in a 170-l rectangular glass tank at various depths and distances from a transducer. The dominant frequency, sound-pressure level, and power spectrum recorded in small tanks were significantly distorted compared to the original tone bursts. Due to resonance, the dominant frequency varied with water depth, and power spectrum level of the projected frequency decreased exponentially with increased distance between the hydrophone and the sound source; however, the resonant component was nearly uniform throughout the tank. Based on the empirical findings and theoretical calculation, a working protocol is presented that minimizes distortion in fish sound recordings in small tanks. To validate this approach, sounds produced by the croaking gourami (Trichopsis vittata) during staged agonistic encounters were recorded according to the proposed protocol in an 1800-l circular tank and in a 37-l rectangular tank to compare differences in acoustic characteristics associated with tank size and recording position. The findings underscore pitfalls associated with recording fish sounds in small tanks. Herein, an empirical solution to correct these distortions is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.