Abstract

Exchangeable arrays are natural tools to model common forms of dependence between units of a sample. Jointly exchangeable arrays are well suited to dyadic data, where observed random variables are indexed by two units from the same population. Examples include trade flows between countries or relationships in a network. Separately exchangeable arrays are well suited to multiway clustering, where units sharing the same cluster (e.g. geographical areas or sectors of activity when considering individual wages) may be dependent in an unrestricted way. We prove uniform laws of large numbers and central limit theorems for such exchangeable arrays. We obtain these results under the same moment restrictions and conditions on the class of functions as those typically assumed with i.i.d. data. We also show the convergence of bootstrap processes adapted to such arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.