Abstract
Slender marine risers used in deepwater applications can experience vortex-induced vibration (VIV). It is becoming increasingly common for field monitoring campaigns to be undertaken wherein data loggers such as strain sensors and/or accelerometers are installed on such risers to aid in VIV-related fatigue damage estimation. Such damage estimation relies on the application of empirical procedures that make use of the collected data. This type of damage estimation can be undertaken for different current profiles encountered. The empirical techniques employed make direct use of the measurements and key components in the analyses (such as participating riser modes selected for use in damage estimation) are intrinsically dependent on the actual current profiles. Fatigue damage predicted in this manner is in contrast to analytical approaches that rely on simplifying assumptions on both the flow conditions and the response characteristics. Empirical fatigue damage estimates conditional on current profile type can account explicitly even for complex response characteristics, participating riser modes, etc. With significant amounts of data, it is possible to establish “short-term” fatigue damage rate distributions conditional on current type. If the relative frequency of different current types is known from metocean studies, the short-term fatigue distributions can be combined with the current distributions to yield integrated “long-term” fatigue damage rate distributions. Such a study is carried out using data from the Norwegian Deepwater Programme (NDP) model riser subject to several sheared and uniform current profiles and with assumed probabilities for different current conditions. From this study, we seek to demonstrate the effectiveness of empirical techniques utilized in combination with field measurements to predict long-term fatigue damage and life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.