Abstract

Abstract A program has been developed for the derivation of empirical interatomic potentials, with particular regard to ionic materials and the use of shell models, incorporating two new methods of fitting. Concurrent fitting of multiple structures is found to enhance greatly the reliability of the derived potentials and can lead to a physically sensible O-O potential without the use of constraints. Inclusion of gas-phase cluster information appears to be beneficial even within an ionic model. By combining free-energy minimization with empirical fitting based on displacements, rather than gradients, it is now possible to determine interatomic potentials with correct treatment of thermal effects and the zero-point energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.